Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105659, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237678

RESUMEN

Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.


Asunto(s)
Proteínas Bacterianas , Pseudomonas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas/enzimología
2.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019122

RESUMEN

Streptococcus agalactiae (group B Streptococcus, GBS) has recently emerged as an important pathogen among adults. However, it is overlooked in this population, with all global efforts being directed towards its containment among pregnant women and neonates. This systematic review assessed the molecular epidemiology and compared how the lineages circulating among non-pregnant populations relate to those of pregnant and neonatal populations worldwide. A systematic search was performed across nine databases from 1 January 2000 up to and including 20 September 2021, with no language restrictions. The Joanna Briggs Institute (JBI) Prevalence Critical Appraisal Tool (PCAT) was used to assess the quality of included studies. The global population structure of GBS from the non-pregnant population was analysed using in silico typing and phylogenetic reconstruction tools. Twenty-four articles out of 13 509 retrieved across 9 databases were eligible. Most studies were conducted in the World Health Organization European region (12/24, 50 %), followed by the Western Pacific region (6/24, 25 %) and the Americas region (6/24, 25 %). Serotype V (23%, 2310/10240) and clonal complex (CC) 1 (29 %, 2157/7470) were the most frequent serotype and CC, respectively. The pilus island PI1 : PI2A combination (29 %, 3931/13751) was the most prevalent surface protein gene, while the tetracycline resistance tetM (55 %, 5892/10624) was the leading antibiotic resistance gene. This study highlights that, given the common serotype distribution identified among non-pregnant populations (V, III, Ia, Ib, II and IV), vaccines including these six serotypes will provide broad coverage. The study indicates advanced molecular epidemiology studies, especially in resource-constrained settings for evidence-based decisions. Finally, the study shows that considering all at-risk populations in an inclusive approach is essential to ensure the sustainable containment of GBS.


Asunto(s)
Antibacterianos , Streptococcus agalactiae , Embarazo , Adulto , Recién Nacido , Humanos , Femenino , Streptococcus agalactiae/genética , Epidemiología Molecular , Filogenia , Bases de Datos Factuales
3.
J Microbiol Methods ; 190: 106322, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506810

RESUMEN

Group B Streptococcus (GBS) is a leading cause of neonatal meningitis, pneumonia, and sepsis. The biggest contributing factor of neonatal infections is due to vertical transmission from maternal colonisation of GBS in the genitourinary tract. Multiple serotype colonisation is often not investigated in epidemiological studies, but it is an important consideration for serotype-based vaccine development and implementation to ensure less abundant serotypes are not under-represented. In this study, we show that RAPD PCR is a quick tool useful in screening the presence of genetically different strains using multiple colony picks from a single patient swab. We observed a maximum of five different GBS strains colonising a single patient at a specific time.


Asunto(s)
Tamizaje Masivo/métodos , Reacción en Cadena de la Polimerasa/métodos , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Streptococcus agalactiae/genética , Streptococcus agalactiae/aislamiento & purificación , ADN Bacteriano , Femenino , Humanos , Lactante , Leche Humana/microbiología , Nasofaringe/microbiología , Polimorfismo de Nucleótido Simple , Recto/microbiología , Serogrupo , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Vagina/microbiología , Secuenciación Completa del Genoma
5.
Vaccine ; 38(43): 6682-6694, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32888741

RESUMEN

BACKGROUND: 21 million pregnant women worldwide (18%) are estimated to carry Group B Streptococcus (GBS), which is a risk for invasive disease in newborns, pregnant women, and stillbirths. Adults ≥ 60 years or with underlying health conditions are also vulnerable to invasive GBS disease. We undertook systematic reviews on GBS organism characteristics including: capsular polysaccharide (serotype), sequence type (multi-locus sequence types (MLST)), and virulence proteins. We synthesised data by at-risk populations, to inform vaccine development. METHODS: We conducted systematic reviews and meta-analyses to estimate proportions of GBS serotypes for at risk populations: maternal colonisation, invasive disease in pregnant women, stillbirths, infants 0-90 days age, and older adults (≥60 years). We considered regional variation and time trends (2001-2018). For these at-risk population groups, we summarised reported MLST and surface proteins. RESULTS: Based on 198 studies (29247isolates), 93-99% of GBS isolates were serotypes Ia, Ib, II, III, IV and V. Regional variation is likely, but data gaps are apparent, even for maternal colonisation which has most data. Serotype III dominates for infant invasive disease (60%) and GBS-associated stillbirths (41%). ST17 accounted for a high proportion of infant invasive disease (41%; 95%CI: 35-47) and was found almost exclusively in serotype III strains, less present in maternal colonisation (9%; 95%CI:6-13),(4%; 95%CI:0-11) infant colonisation, and adult invasive disease (4%, 95%CI:2-6). Percentages of strains with at least one of alp 1, alp2/3, alpha C or Rib surface protein targets were 87% of maternal colonisation, 97% infant colonisation, 93% infant disease and 99% adult invasive disease. At least one of three pilus islands proteins were reported in all strains. DISCUSSION: A hexavalent vaccine (serotypes Ia, Ib, II, III, IV and V) might provide comprehensive cover for all at-risk populations. Surveillance of circulating, disease-causing target proteins is useful to inform vaccines not targeting capsular polysaccharide. Addressing data gaps especially by world region and some at-risk populations (notably stillbirths) is fundamental to evidence-based decision-making during vaccine design.


Asunto(s)
Infecciones Estreptocócicas , Vacunas , Anciano , Femenino , Humanos , Lactante , Recién Nacido , Proteínas de la Membrana , Tipificación de Secuencias Multilocus , Embarazo , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Streptococcus agalactiae/genética
6.
BMC Res Notes ; 12(1): 85, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30764872

RESUMEN

OBJECTIVE: Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and sepsis worldwide. Intrapartum antibiotics given to women carrying GBS are an effective means of reducing disease in the first week of life. Rapid and reliable tests are needed to accurately identify GBS from these women for timely intrapartum antibiotic administration to prevent neonatal disease. Many laboratories now use matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) by direct plating or cell lysis for the identification of GBS isolates. The cell lysis step increases time to results for clinical samples and is more complex to perform. Therefore, we seek to evaluate the sensitivity and specificity of the quicker and more rapid direct plating method in identifying GBS. RESULTS: We directly compared swab isolates analysed by both direct plating and cell lysis method and demonstrated that direct plating has a sensitivity and specificity of 0.97 and 1, respectively, compared to an additional cell lysis step. We demonstrated that MALDI-TOF MS can be successfully used for batch processing by the direct plating method which saves time. These results are reassuring for laboratories worldwide who seek to identify GBS from swabs samples as quickly as possible.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/normas , Streptococcus agalactiae/aislamiento & purificación , Adulto , Femenino , Humanos , Recién Nacido , Embarazo , Sensibilidad y Especificidad
7.
J Biol Chem ; 294(8): 2862-2879, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30573678

RESUMEN

Legionella pneumophila causes Legionnaires' disease, a severe form of pneumonia. L. pneumophila translocates more than 300 effectors into host cells via its Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) type IV secretion system to enable its replication in target cells. Here, we studied the effector LtpM, which is encoded in a recombination hot spot in L. pneumophila Paris. We show that a C-terminal phosphoinositol 3-phosphate (PI3P)-binding domain, also found in otherwise unrelated effectors, targets LtpM to the Legionella-containing vacuole and to early and late endosomes. LtpM expression in yeast caused cytotoxicity. Sequence comparison and structural homology modeling of the N-terminal domain of LtpM uncovered a remote similarity to the glycosyltransferase (GT) toxin PaTox from the bacterium Photorhabdus asymbiotica; however, instead of the canonical DxD motif of GT-A type glycosyltransferases, essential for enzyme activity and divalent cation coordination, we found that a DxN motif is present in LtpM. Using UDP-glucose as sugar donor, we show that purified LtpM nevertheless exhibits glucohydrolase and autoglucosylation activity in vitro and demonstrate that PI3P binding activates LtpM's glucosyltransferase activity toward protein substrates. Substitution of the aspartate or the asparagine in the DxN motif abolished the activity of LtpM. Moreover, whereas all glycosyltransferase toxins and effectors identified so far depend on the presence of divalent cations, LtpM is active in their absence. Proteins containing LtpM-like GT domains are encoded in the genomes of other L. pneumophila isolates and species, suggesting that LtpM is the first member of a novel family of glycosyltransferase effectors employed to subvert hosts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Legionella pneumophila/enzimología , Fosfatidilinositoles/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Endosomas , Glucosiltransferasas/química , Células HeLa , Humanos , Transporte de Proteínas , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...